If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+18m+46=-19
We move all terms to the left:
m^2+18m+46-(-19)=0
We add all the numbers together, and all the variables
m^2+18m+65=0
a = 1; b = 18; c = +65;
Δ = b2-4ac
Δ = 182-4·1·65
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8}{2*1}=\frac{-26}{2} =-13 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8}{2*1}=\frac{-10}{2} =-5 $
| 10x+24=7x | | 10r-2r+4r-10r=12 | | 2x=8x-78 | | -5+4y=-57 | | w+4.94=8.86 | | 2x-8=8x-68 | | 6w+-17w-7w=18 | | 2x-45=3x-72 | | w-8.69=9.8 | | (4y+5)+(2y+35)=180 | | (4y+5)+(2y+35)=90 | | 7.2x-8.3=13 | | 9f/5=27 | | v+2.32=6.84 | | 7.3x-8.3=13 | | 5/2x-1=3/x+1 | | v-6.4=7.9 | | 3x-93=12 | | 6x-5=4x-13 | | 9m+6m-12m=6 | | y2=^1814 | | 7x-5=10x+80 | | 10=2x=4 | | 10^3x=50 | | 14a+2a-13a+2a=8 | | 14a+2a−13a+3a+2a=8 | | 13x-20=2(6x+4) | | 16s-15s=8 | | 5(x-6)=2x-2(1-x) | | y+70=5y-50 | | 16s−15s=8 | | 2b-2=6b-74 |